Search results

Search for "carbon shell" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • . Figure 2c clearly shows the two kinds of interfaces, that is (1) the interface between a SiC core and a carbon shell and (2) the interface between the carbon phase and a ZnO particle. The (111) and (002) interplane spacings of, respectively, β-SiC and ZnO can be seen (Figure 2d,f), while the carbon is an
  • amorphous state (Figure 2e). The carbon shell may have a positive effect on the nucleation of ZnO particles. This is because oxygen-containing functional groups (such as carboxyl and hydroxy groups) and structural defects are generated on the SiC@C surface during the in situ carbonization [24], which both
  • , indicating that the conductivity loss through the carbon shell plays a dominant role in the EM dissipation. Based on the above analysis, it is considered that multiple loss mechanisms may contribute to the improvement of EM absorption for the as-prepared SiC@C-ZnO hybrids (Figure 7). First, the hybrid
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • sulfur host material [24][31]. As an example, Zhang et al. [24] designed a sulfur host based on porous double-shell microspheres, which consist of hollow carbon nanobeads inside a microsized carbon shell. In this structure, sulfur is infused in the nanobeads inside the microspheres and neither sulfur nor
PDF
Album
Review
Published 09 Sep 2021

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • form aggregates, exert variable oxidation states and result in dose-dependent toxicity. Several supports, including silica and carbon, were used to reduce such aggregation. Notably, different types of nanocomposites were reported based on Co, Ni, Mn and Fe over mesoporous carbon capsules [8]. A carbon
  • -shell support thickness of about 50 nm was reported with a high ferrite loading capacity of about 30–50 wt % with particle diameters between 9 and 17 nm (at the external carbon layer). Such a magnetic nanoformulation was found to be useful for enzyme lysozyme immobilization. The magnetic properties of
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • synthesis remains a challenge. In this work, the controllability of the synthesis route is enhanced by immobilizing the transition-metal graphitization catalyst on a porous carbon shell covering the carbide precursor prior to conversion of the carbide core to carbon. The catalyst loading was varied and the
  • crystallinity and pore structure of the resulting carbide-derived carbon materials. In this sense, the content of graphitic carbon could be varied from 10–90 wt % as estimated from TPO measurements and resulting in a specific surface area ranging from 1500 to 300 m2·g−1. Keywords: carbon shell; catalytic
  • heterogeneous combination. Immobilizing the transition metal-catalyst at each particle would ensure a homogeneous catalytic graphitization of the whole powder samples. We recently introduced the possibility to obtain core–shell particles in which a nanoporous carbon shell is covering a carbide core [14][15][24
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • shielded by the carbon shell. To be specific, the presence of oxide layers would imply the presence of an antiferromagnetic shell around the ferromagnetic cores, i.e., the material would evolve the exchange bias effect where nanoparticles cooled under a magnetic field show a significant shift between the
  • ) first (solution) and b) second filling approach. Inset: a MNP, attached to the outer surface of a CNT, and covered with a carbon shell. TEM bright field images for the a) as-prepared and b) annealed samples of Fe50Co50@CNT prepared by the second filling approach. c) HRTEM images for the as-prepared
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • growth of the nanotube continues as long as fresh feedstock is supplied, unless the catalyst particle becomes deactivated by an impermeable carbon shell. In the base-growth model, the initial precursor dissociation and carbon diffusion occur similarly to those in the tip-growth model, but the carbon
  • passivating carbon shell is sterically hindered. The templating provides prolonged catalyst lifetimes and the growth is maintained for many hours until all feedstock is consumed [144]. In [145], the nickelocene-filled SWCNTs were annealed at temperatures ranging from 250 to 1200 °C to form DWCNTs. Using Raman
PDF
Album
Review
Published 11 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • interfacial stabilisation of the NPs. The flexible and conductive graphene and carbon shell around the Fe3O4 NPs can accommodate the mechanical stress induced by the volume change of the NPs and thus maintain the structural and electrical integrity of the hybrid during the lithiation and delithiation
PDF
Album
Review
Published 24 Mar 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • the shell and the particles, allowing for the expansion of Si without deforming the carbon shell. Such an anode shows a capacity retention of 74% after 1000 cycles at a rate of C/10 [9]. Yang et al. fabricated a Si-based anode with a core–shell–shell heterostructure of Si nanoparticles as the core
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

  • Rebeca Ortega-Amaya,
  • Yasuhiro Matsumoto,
  • Andrés M. Espinoza-Rivas,
  • Manuel A. Pérez-Guzmán and
  • Mauricio Ortega-López

Beilstein J. Nanotechnol. 2016, 7, 1010–1017, doi:10.3762/bjnano.7.93

Graphical Abstract
  • distance of the carbon shell as well as the inorganic core, corroborating that they correspond to rGO and Cu2O, respectively. It is noteworthy that Cu2ONPs were not observed when experiments were done using GO-free Cu foil substrates. Therefore, it is quite probably that the Cu-based NPs obtained at 200
PDF
Album
Full Research Paper
Published 11 Jul 2016

Interaction of electromagnetic radiation in the 20–200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles

  • Agylych Atdayev,
  • Alexander L. Danilyuk and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2015, 6, 1056–1064, doi:10.3762/bjnano.6.106

Graphical Abstract
  • ferrocene content are distributed both inside and outside the CNTs and are covered by a carbon shell which prevents their oxidation [8][32][33]. The average size of the NPs is slightly less than the CNT diameter, and lies in the range of a = 20–30 nm [34], and are therefore considered as a single domain [35
PDF
Album
Full Research Paper
Published 24 Apr 2015

Gas sensing properties of nanocrystalline diamond at room temperature

  • Marina Davydova,
  • Pavel Kulha,
  • Alexandr Laposa,
  • Karel Hruska,
  • Pavel Demo and
  • Alexander Kromka

Beilstein J. Nanotechnol. 2014, 5, 2339–2345, doi:10.3762/bjnano.5.243

Graphical Abstract
  • ; and deposition time, 5 h. Figure 1a shows the SEM image of the surface morphology of the sensor substrate (Si/SiO2 + IDEs with a separation of 200 µm) coated with the NCD layer using a 40 min nucleation time. This top view depicts the presence of an amorphous carbon shell at the diamond grains (film
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • and iron carbide. As XRD analysis revealed these particles were not oxidized because of the shielding from the carbon shell. The particle at the growth surface is an active catalyst particle (‘base’ growth mechanism) [70] and it is an iron silicon carbide phase. In case of N-CNTs, the catalyst
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

  • Antti Tolvanen and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 173–179, doi:10.3762/bjnano.4.17

Graphical Abstract
  • behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single-crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing pressure on the system in the range of gigapascals. The material
  • the metal particle in equilibrium [18], and since during the contraction the interaction is repulsive, the exact functional form of this interaction is irrelevant, and such a simple model captures the essence of the process of a contracting carbon shell. Spherical nanoparticles were formed by cutting
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2013
Graphical Abstract
PDF
Album
Review
Published 17 Dec 2012
Other Beilstein-Institut Open Science Activities